A Fast Parallel SVM Algorithm for Massive Classification Tasks

نویسندگان

  • Thanh-Nghi Do
  • Van Hoa Nguyen
  • François Poulet
چکیده

The new parallel incremental Support VectorMachine (SVM) algorithm aims at classifying very large datasets on graphics processing units (GPUs). SVM and kernel related methods have shown to build accurate models but the learning task usually needs a quadratic programming, so that the learning task for large datasets requires big memory capacity and a long time. We extend the recent finite Newton classifier for building a parallel incremental algorithm. The new algorithm uses graphics processors to gain high performance at low cost. Numerical test results on UCI, Delve dataset repositories showed that our parallel incremental algorithm using GPUs is about 45 times faster than a CPU implementation and often significantly over 100 times faster than state-of-the-art algorithms LibSVM, SVM-perf and CB-SVM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is &#10its complex and time-consuming computations in real-time ...

متن کامل

Space Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters

Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...

متن کامل

A Simple, Fast Support Vector Machine Algorithm for Data Mining

Support Vector Machines (SVM) and kernel related methods have shown to build accurate models but the learning task usually needs a quadratic programming, so that the learning task for large datasets requires big memory capacity and a long time. A new incremental, parallel and distributed SVM algorithm using linear or non linear kernels proposed in this paper aims at classifying very large datas...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

Efficient Text Categorization Using a Min-Max Modular Support Vector Machine

The min-max modular support vector machine (M-SVM) has been proposed for solving large-scale and complex multiclass classification problems. In this paper, we apply the M-SVM to multilabel text categorization and introduce two task decomposition strategies into M-SVMs. A multilabel classification task can be split up into a set of two-class classification tasks. These two-class tasks are to dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008